

Automating the Architecture Evaluation of

Enterprise Information Systems

Felipe Pinto
1,2

, Uirá Kulesza
1
 and Eduardo Guerra

3

1Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
2Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Natal, Brazil

3National Institute for Space Research (INPE), São José dos Campos, Brazil

felipe.pinto@ifrn.edu.br, uira@dimap.ufrn.br, guerraem@gmail.com

Keywords: Scenario-based evaluation, architecture evaluation, annotation, quality attribute, scenario.

Abstract: Traditional scenario-based architectural analysis methods rely on manual review-based evaluation that

requires advanced skills from architects and evaluators. They are applied when the architecture has been

specified, but before its implementation has begun. The system implementation is one additional and

fundamental element that should be considered during the software architecture evaluation. In this paper, we

propose an approach to add information, which ideally should come from traditional evaluation methods,

about scenarios and quality attributes to the source code using metadata in order to allow the automatic

analysis producing a report with information about scenarios, quality attributes, source code assets and

potential tradeoff points among quality attributes. The paper also presents the preliminary results of the

approach application to an enterprise web information system and an e-commerce web system.

1 INTRODUCTION

Over the last decade several software architecture

evaluation methods based on scenarios and quality

attributes have been proposed (Clements, 2002)

(Bengtsson, 2004) (Williams, 2002). These

methods use scenarios in order to exercise the

software architecture what allow the gain of

architectural-level understating and of predictive

insight to achieve desired quality attributes

(Kazman, 1996).

Traditional scenario-based methods produce a

report as output which contains information about

risk analysis regarding architecture decisions.

ATAM (Clements, 2002), produce information

about tradeoff points. A tradeoff point is an

architectural decision that affects more than one

quality attribute. For example, changing the level

of encryption could have impact on both security

and performance.

All these methods are applied manually and

rely on manual review-based evaluation that

requires advanced skills from architects and

evaluators. They are classically applied when the

architecture has already been specified, but before

implementation has begun. The system

implementation is one additional element that can

be useful when suitably analyzed, for example, if

the software evolves causing critical architectural

erosion (Silva, 2012) implying on the need of

executing the process of evaluation again because

the architecture designed has several differences to

the architecture implemented (Abi-Antoun, 2009).

We believe that the usage of system

implementation during the architecture evaluation

can enable the automation of this process and the

reuse of architectural information and tests. In this

context, we propose an approach that introduces

additional information, which ideally should come

from traditional architecture evaluation methods,

about scenarios and quality attributes to the

application code using metadata. Further, it

executes an automated tool to perform the analysis

producing a report with relevant information about

scenarios, quality attributes and code asset, such

as: (i) the scenarios affected by particular quality

attributes; and (ii) the scenarios that potentially

contain tradeoff points and should have more

attention from the architecture team

The rest of this paper is organized as follows:

Section 2 introduces the approach; Section 3

presents the tool developed; Section 4 shows two

case studies where we have applied our approach;

Section 5 discusses some related works and,

finally, Section 6 concludes the paper.

2 APPROACH OVERVIEW

This section presents an overview of our approach.

The main goal is to automate the architecture

evaluation by adding extra information with

metadata to the application source code. The

approach presented here is independent of

programing language or platform. Figure 1

summarizes the approach steps.

Figure 1: Approach overview.

In Figure 1, the column “Steps” presents the

step description and the column “How” shows an

example of how it is accomplished on our

developed tool. Next subsections detail each one of

the steps which are presented considering the

developed tool that uses annotation to define

metadata information. In languages that do not

support annotations, the metadata can be defined

externally, such as on databases or XML files.

2.1 Choosing evaluation scenarios

The first step of our approach is to choose the

scenarios from the target architecture to be

evaluated. In order to perform this step, we can

reuse information produced by previous activities

from the development process. In particular, the

elicited relevant scenarios gathered during the

application of traditional architecture evaluation

methods, such as ATAM or others (Muhammad,

2004), can be reused during this step.

2.2 Identifying scenarios

In this step we identify the starting points of the

execution of the chosen scenarios in the

application source code under evaluation. A

scenario execution defines paths of execution

which can be abstracted to a call graph where each

node represents a method and each edge represents

possible invocations.

Our challenge in this step is to define how

identifying scenarios or paths of execution in the

application source code. A simple solution is just

identify the method which represents the call graph

root node and after that based on the invocations of

this node to identify the complete call graph

related to this root node.

In order to allow the introduction of this

information in the source code, our tool defines an

annotation named @Scenario which defines an

attribute to identify it uniquely. Figure 2 shows an

example of this annotation.

2.3 Identifying quality attributes

The identification of quality attributes in the

application source code is similar to the

identification of starting methods. We have to add

the metadata to the element that we are interested.

The tool currently defines method annotations

considering the following quality attributes:

@Performance, @Security and @Reliability.

These annotations are the ones implemented by the

developed tool, the approach can be generalized to

evaluate other quality attributes.

Figure 2 shows the annotations and their

respective attributes. Performance annotation has

two attributes: name and time limit. Name is a

string that uniquely identifies it and time limit is a

long integer that specifies a maximum time

expected in milliseconds. The annotated method

must complete its execution in a shorter time

compared to the time limit value. As a

consequence, we can monitor if an annotated

method has improved or decreased its performance

in the context of an evolution among different

releases of the system.

Figure 2: Approach annotations.

Security annotation has currently one attribute,

a string that uniquely identifies it. It is useful

because allows determining which execution paths

of scenarios have potential to contain tradeoff

points. For example, increasing the level of

encryption could improve the security of the

system, but on the hand it requires more processing

time. That is, if a path of scenario execution is

associated to more than one quality attribute, we

need to observe and monitor it carefully because it

has potential to contain tradeoff points.

Similarly to performance, the reliability

annotation has a unique string attribute and a

double attribute that specifies the failure rate. It

represents the maximum failure rate expected for

an annotated method from zero to one. Zero means

that it never fails and one that fails in all the cases.

Currently, it is used to check if a particular

scenario has potential tradeoff points.

2.4 Static and dynamic analysis

The last step of our approach involves the

execution of static and dynamic analysis

implemented in a tool. This tool parses the

metadata from the source code and performs

analysis automatically in order to enable the

automate architecture evaluation based on the

configured scenarios and quality attributes.

During the static analysis the tool parses the

annotations and builds a call graph of the methods

involved in the execution paths of the system

scenarios. After that, using this information, the

tool can: (i) discover the quality attributes

associated to a particular scenario or which one has

potential to have tradeoff points; (ii) discover

which methods, classes or scenarios could be

affected due to a particular quality attribute; (iii)

perform traceability of scenarios and quality

attributes in the source code.

The dynamic analysis also benefits from our

code annotations in order to perform the

architecture evaluation during the system

execution. It allows monitoring the quality

attributes and, also, dynamic reflective calls are

capture only by dynamic analysis. The following

analysis can be currently accomplished using our

approach: (i) calculating the performance time or

failure rate from a particular annotated method or

from a complete path of scenario execution; (ii)

verifying if the constraints defined by quality

attribute annotations are respected over the

different evolution releases of the system; (iii)

logging of several information captured during the

runtime; (iv) adding more useful information to

detect and analyze tradeoff points.

3 APPROACH TOOL SUPPORT

This section introduces a tool that we have

developed to support our approach. It has been

accomplished as two independent components: (i)

the static analysis is implemented as an Eclipse

plugin; and (ii) the dynamic analysis is made

available as an executable JAR file.

3.1 Tool Support for Static Analysis

The static analysis tool allows executing the

architecture evaluation over Eclipse projects. It

currently parses source code from Java projects.

Figure 3 shows a partial class diagram.

Figure 3: UML class diagram showing tool processors.

The JavaProjectProcessor class calls other

classes in order to build the call graph of the

system under architectural evaluation. We have

used the CAST (Common Abstract Syntax Tree)

front-end of WALA (Watson Libraries for

Analysis) static analysis framework (WALA,

2012) to build the call graph of the scenarios of

interest. AnnotationProcessor class aggregates a

set of different concrete strategy classes to process

the different quality attribute annotations. Each one

of them is responsible for the processing of a

particular kind of annotation. During the

annotation parsing, the AnnotationProcessor

class also builds the list of scenarios annotated to

complement the data structures built previously.

JavaProjectProcessor class also uses the

JDTWALADataStructure to access and manipulate

the application call graph and the indexes. The

JDTWALADataStructure class uses

ElementIndexer to build indexes of methods,

classes and annotations to be used during the

analysis. Actually, the annotation index is created

by the AnnotationVisitor class that reads the

source code looking for annotations.

Figure 4 summarizes the static analysis

process. JavaProjectProcessor uses

JDTWALADataStructure to build the call graph and

the indexes. ElementIndexer is used to build the

method index and the annotation index, but it

creates an object AnnoationVisitor that parsers

the source code looking for annotations. Then,

AnnotationProcessor processes the scenario

annotations and builds a list of scenarios. Finally,

it processes each quality attribute annotation

calling every AbstractProcessorQA

specializations.

Figure 4: UML sequence diagram to static analysis.

Our static analysis tool uses a model to

represent the relationships among the system

assets, such as classes, methods, scenarios and

quality attributes. Figure 5 shows a partial class

diagram of this model. The ScenarioData has a

starting root method and MethodData has a

declaring class. Each quality attribute is a

specialization of the AbstractQAData which in

turn keeps a reference to its related method.

Finally, every MethodData instance has also an

attribute signature that references the method node

in the WALA call graph.

Figure 5: Class diagram of the static analysis model.

3.2 Tool Support for Dynamic Analysis

Our dynamic analysis tool has been implemented

using AspectJ language by defining aspects that

monitor the execution of annotated methods.

Essentially, the tool builds a dynamic call graph

during application execution intercepting the

approach annotations. In this way, if an annotated

method is called, a specific aspect for each kind of

annotations is automatically invoked. When a

method is intercepted, the aspects register and

monitor the method execution by gathering

information about their name, the current

execution thread and the parameters values. These

information is then stored in the dynamic call

graph in order to help the decision making about

what to do when something is wrong, for example,

logging the @Reliability annotated methods who

has thrown or handled an exception.

The current version of our tool has

implemented aspects to intercept scenarios and

quality attributes annotations (performance,

security and reliability). These aspects use concrete

strategy objects, which have a common interface in

order to make possible the aspects to call them. In

that way the developers can define their own

strategies for dealing with the quality attribute

which are generally dependent on the domain and

application.

In our tool, we have implemented default

strategies to gather and store information about the

execution of the relevant architecture scenarios. In

addition, we have also implemented specific

strategies for our case studies, which will be

presented in Section 4.

4 APPROACH EVALUATION

We have applied our approach in two different

systems. In the first one, we have explored the

static analysis in an academic enterprise large-

scale web system developed for our institution, and

in the second one the dynamic analysis in an e-

commerce web system. Our main goal was to

conduct an initial evaluation of the approach in

order to verify its feasibility and how the

developed tool behaves in practice.

4.1 Static Analysis in Action

We have applied the static analysis tool of our

approach to enterprise web systems from

SINFO/UFRN. SINFO is the Informatics

Superintendence at Federal University of Rio

Grande do Norte (UFRN) in Brazil. It has

developed several enterprise large-scale

information systems (SINFO, 2012) which

perform full automation of university management

activities. Due to the quality of these systems,

several Brazilian federal institutions have licensed

and extended them to their needs.

Our main goal was to verify the approach

feasibility of static analysis in practice. In this

sense, the tool should extract useful information in

order to help developers answering some

questions, such as: (i) what scenarios does a

specific method belong to? (ii) what kinds of

quality attributes can affect a specific scenario?

(iii) what are the scenarios that contain potential

tradeoff points among quality attributes?

4.1.1 Choosing Evaluation Scenarios

In the first step we have chosen some specific

scenarios: (i) sending message – scenario used for

sending messages (emails); (ii) authenticated

document generation – scenario used to generate

authenticated documents; (iii) user authentication

– scenario used to authenticate users in the web

application; (iv) mobile user authentication –

scenario used to authenticate users from a mobile

device.

4.1.2 Identifying scenarios

In this step the starting execution method for each
chosen scenario were identified. They are,
respectively: (i) sendMessage(); (ii) execute();
(iii) userAuthentication(); (iv)
mobileUserAuthentication().

4.1.3 Identifying quality attributes

The methods and quality attributes selected were:

(i) getJdbcTemplate() with @Performance – it

was considered to be relevant for performance

requirements because it is accessed by several

database operations; (ii) enqueue()with @Security

– it is used by the system to enqueue messages that

will be sent over the network; (iii)

createRegistry()with @Security – it is used to

create the registry of an authenticated document to

ensure its legitimacy; (iv) toMD5() with

@Security – it is used to create an MD5 hashing of

strings, for example, passwords; (v)

initDataSourceJndi() with @Reliability – it is

used to initialize the access to the database and was

considered critical for reliability because if the

database initialization fails, the system is not going

to work adequately.

4.1.4 Executing the Static Analysis Tool:
Preliminary Results

The tool execution has extracted useful and

interesting information in order to help us

answering the questions highlighted on section 4.1.
Considering the first question – (i) what

scenarios does a specific method belong to? – the
tool can determine that the getJdbcTemplate()
method, for example, belongs to the following
scenarios: user authentication, mobile user
authentication and authenticated document
generation. This is possible because the tool builds
a static call graph of each scenario and calculates if
a call to a particular method exists in some of the
possible paths of execution.

Regarding the second question – (ii) what kinds

of quality attributes can affect a specific scenario?

– the tool verifies all the paths for a specific

scenario checking which ones have any quality

attribute. Our tool has identified, for example, all

the quality attributes related to the User

Authentication scenario: (i) performance quality

attribute – because the method

getJdbcTemplate() belongs to a possible path; (ii)

the reliability quality attribute because the method

initDataSourceJndi() also belongs to a possible

path; and (iii) finally, the security quality attribute

for the same reason, the method toMD5() is used to

encrypt the user password.

Finally, for answering the third question – (iii)

what are the scenarios that contain potential

tradeoff points among quality attributes? – the tool

looks for scenarios affected by more than one

quality attribute because they contain potentially

tradeoff points among their quality attributes. The

tool has identified that: (i) user authentication and

mobile user authentication are potential scenarios

to have tradeoff because they are affected by

performance, security and reliability; (ii)

authenticated document generation is another

potential tradeoff point because it addresses the

reliability and security quality attributes; on the

other hand (iii) the sending message does not

represent a tradeoff point because it is only

affected by the security quality attribute. These

results are summarized in Table 1.

Table 1: Some information about tradeoffs in scenarios.

Scenario: User Authentication

Performance: getJdbcTemplate()

Security: toMD5()

Reliability: initDataSourceJndi()

Tradeoff: Potential

Scenario: Mobile User Authentication

Performance: getJdbcTemplate()

Security: toMD5()

Reliability: initDataSourceJndi()

Tradeoff: Potential

Scenario: Authenticated Document Generation

Performance: -

Security: createRegistry()

Reliability: initDataSourceJndi()

Tradeoff: Potential

Scenario: Sending Message

Performance: -

Security: enqueue()

Reliability: -

Tradeoff: No

The information identified automatically by our

tool is useful to indicate to the architects and

developers which specific scenarios and code

assets they need to give more attention when

evaluating or evolving the software architecture

through the conduction of code inspections or the

execution of manual or automated testing. In that

way, our preliminary evaluation in large-scale

enterprise systems has allowed us to answering the

expected questions previously highlighted and

demonstrated the feasibility of our static analysis

approach.

4.2 Dynamic Analysis in Action

The evaluation of the dynamic analysis was

performed by applying our tool to the

EasyCommerce web system (Torres, 2011)

(Aquino, 2011) which is an e-commerce web

system that has been developed by graduate

students at our institution. It implements a concrete

product of an e-commerce software product line

described in (Lau, 2006).

The main aim of our evaluation was to extract

execution context information in order to analyze

the aspects behaviour in practice to achieve the

following dynamic analysis: (i) monitoring of

scenario execution and the annotated methods; (ii)

calculation of the performance time (timeSpent) of

methods and scenarios; and (iii) detection of

executed paths with potential tradeoff points.

4.2.1 Choosing Evaluation Scenarios

We have chosen some of the scenarios that

represent the main features of EasyCommerce: (i)

registration of login information – it records the

user information about login, such as user name

and password; (ii) registration of personal

information – it records personal information about

the user, such as name, address, birthday,

document identification; (iii) registration of credit

card information – it records information about

users credit card such as card number and

expiration date; (iv) search for products – It

allows searching for products by its name, type or

features; (v) include product item to cart – it

allows users adding a product item to their

shopping cart.

4.2.2 Identifying scenarios

In this step the starting execution method for each

chosen scenario were identified. They are,

respectively: (i) registerLogin(); (ii)

registerUser(); (iii) registerCreditCard(); (iv)

searchProducts(); (v) includeItemToCart().

4.2.3 Identifying quality attributes

We have chosen some methods belonging to the

scenarios that appear to have potential to be

relevant to specific quality attributes. The selected

ones were: (ii) save() with @Performance – it is

used by the system to save all its objects, because

of that it should run as fast as possible; (ii) save()

with @Reliability – considering that this method

is executed many times and it represents a critical

action is fundamental to analyze its robustness.

(iii) registerLogin(), registerUser(), and

registerCreditCard() with @Security – these

methods manipulate user confidential information

and they are in some way related to security.

4.2.4 Executing the Aspects of Dynamic
Analysis: Preliminary Results

We have executed the selected scenarios of

EasyCommerce web system together with the

aspects of dynamic analysis in order to perform the

evaluation of the results and benefits which are

discussed next.

Our approach defines a specific strategy to

analyze the annotated scenarios through an aspect.

For such cases, our aspect builds a dynamic call

graph structure used: (i) to monitor de scenarios

execution; (ii) to calculate the time to execute

completely the scenario or a particular method;

(iii) to get some information of the execution

context, such as the date and time of execution.

The current stored information provided by our

scenario aspect can help architects and developers

to identify: (i) all the cases where a method has

taken more time to execute than the specified value

in the @Performance annotation; (ii) the execution

time for a given scenario; and (iii) the quality

attributes addressed in particular methods.

Table 2 shows information collected by

scenario aspect which shows some obtained results

from the execution of the scenarios register of

login, register of personal information and register

of credit card information. Executing these

scenarios we have one occurrence of performance

in save(), three occurrences of security in

registerLogin(), registerUser() and

registerCreditCard() and one occurrence of

reliability in save().

Table 2: Sample of data collected by dynamic analysis.

Registration of login information

Execution time (ms): 3

Performance: -

Security: registerLogin()

Reliability: -

Registration of personal information

Execution time (ms): 2

Performance: -

Security: registerUser()

Reliability: -

Registration of credit card information

Execution time (ms): 150

Performance: save()

Security: registerCreditCard()

Reliability: save()

Analyzing the dynamic call graph generated the

tool can inform which scenarios contain potential

tradeoff points. For example,

registerCreditCard() calls record() that calls

save(). The save() method has been annotated

with the performance and reliability quality

attributes. The registerCreditCard() method

has been annotated with the security quality

attribute. Thus, we have a scenario with three

quality attributes involved and because of that a

potential tradeoff points among them.

The dynamic analysis process in this study has

met our expectations because it has allowed us

extracting useful information of the execution

context, such as, monitoring of scenarios and

quality attributes, calculating the performance of

scenarios and specific methods and last, but not

least, detecting executed paths with potential

tradeoff points.

5 RELATED WORK

To the best of our knowledge, there is no existing

proposal that looks for the automation of

architecture evaluation methods in the same way of

ours and we have not found approaches really

close to ours. In this section, we summarize some

research work that address architectural evaluation

or propose analysis strategies similar to ours.

Over the last years, several architecture

evaluation methods, such as ATAM, SAAM,

ARID (Clements, 2002), ALMA (Bengtsson,

2004) and PASA (Williams, 2002) have been

proposed. They rely on manual reviews before of

the architecture implementation. Our approach

complements these existing methods by providing

automated support to static and dynamic analysis

over the source code of the software system. It

contributes to the continuous evaluation of the

software architecture during the system

implementation and evolution.

Also, some recent research work have proposed

adding extra architectural information to the source

code with the purpose of applying automated

analysis or document the software architecture.

(Christensen, 2011) uses annotations to add

information about components and design patterns

with the purpose of document the architecture.

(Mirakhorli, 2012) presents an approach for tracing

architecturally significant concerns, specifically

related to architectural tactics which are solutions

for a wide range of quality concerns. These recent

research work, however, do not explored the

combined usage of adding information related to

scenarios or quality attributes.

6 CONCLUSION

We presented an approach to automating the

software architecture evaluation using the source

code as input of this process that consists on

adding metadata to the source code providing extra

information, such as, scenarios and quality

attributes. It provides support to the execution of

static and dynamic analysis that aims the automatic

evaluating of the software architecture. Finally, it

has been applied in two systems: a large-scale

enterprise information system and an e-commerce

web system. The preliminary obtained results of

the approach usage have allowed us to provide and

quantifying several and useful information about

architecture evaluation based on scenarios and

quality attributes.

The approach presented is still under

development and we are currently evolving it in

order to apply to other large-scale enterprise

information systems. We have also identified

several possibilities for future work, for example, it

is possible to detect which paths of execution are

more often followed and their performance to

suggest to the developers or architects team try to

improve them. Another possibility is to verify if all

the possible paths of execution for all scenarios

prioritized on the architecture evaluation have been

effectively executed and tested. It is also possible

confronting the static and dynamic call graph in

order to check missing paths (Liu, 2011) when a

path exists in the static call graph and it does not

exist in the dynamic call graph meaning a not

tested path or dead code.

REFERENCES

Abi-Antoun, M., Aldrich, J. 2009. Static extraction and

conformance analysis of hierarchical runtime

architectural structure using annotations. SIGPLAN

Not. 44, 10 (October 2009), 321-340.

Aquino, H. M. (2011). A Systematic Approach to

Software Product Lines Test. 2011. MSc

Dissertation, Federal University of Rio Grande do

Norte (UFRN), Natal, Brazil, 2011.

Christensen, H. B., Hansen, K, M. 2011. Towards

architectural information in implementation (NIER

track). In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11).

ACM, New York, NY, USA, 928-931.

Clements, P., Kazman, R., Klein, M. 2002. Evaluating

Software Architectures: Methods and Case Studies,

Addison-Wesley.

Informatics Superintendence, UFRN:

http://www.info.ufrn.br/wikisistemas, May 2012.

Kazman, R., Abowd, G., Bass, L., Clements, P. 1996.

Scenario-Based Analysis of Software Architecture.

IEEE Softw. 13, 6 (November 1996), 47-55.

Lau, S. Q. 2006. Domain Analysis of E-Commerce

Systems Using Feature-Based Model Templates,

MASc Thesys, University of Waterloo.

Liu, S., and Zhang, J. 2011. Program analysis: from

qualitative analysis to quantitative analysis (NIER

track). In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11).

Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M..

2012. A tactic-centric approach for automating

traceability of quality concerns. In Proceedings of

the 2012 International Conference on Software

Engineering (ICSE 2012).

Muhammad and Ian Gorton. 2004. Comparison of

Scenario-Based Software Architecture Evaluation

Methods. In Proceedings of the 11th Asia-Pacific

Software Engineering Conference (APSEC '04).

Silva, L., Balasubramaniam, D.. 2012. Controlling

software architecture erosion: A survey. J. Syst.

Softw. 85, 1 (January 2012), 132-151.

Torres, M. 2011. Systematic Assessment of Product

Derivation Approaches. MSc Dissertation, Federal

University of Rio Grande do Norte (UFRN), Natal,

Brazil, 2011.

WALA, T. J. Watson Libraries for Analysis:

http://wala.sourceforge.net, December 2012.

